
Package: rpca (via r-universe)
October 11, 2024

Type Package

Title RobustPCA: Decompose a Matrix into Low-Rank and Sparse
Components, truncated version, with additional L2 noise
separation option

Version 0.3.2

Date 2018-01-11

Author Maciek Sykulski [aut, cre], Krzysztof Gogolewski [aut]

Maintainer Maciek Sykulski <macieksk@gmail.com>

Description Suppose we have a data matrix, which is the superposition
of a low-rank component and a sparse component. Candes, E. J.,
Li, X., Ma, Y., & Wright, J. (2011). Robust principal component
analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we
can recover each component individually under some suitable
assumptions. It is possible to recover both the low-rank and
the sparse components exactly by solving a very convenient
convex program called Principal Component Pursuit; among all
feasible decompositions, simply minimize a weighted combination
of the nuclear norm and of the L1 norm. This package implements
this decomposition algorithm resulting with Robust PCA
approach.

License GPL-2 | GPL-3

Imports compiler, irlba, Matrix

Repository https://macieksk.r-universe.dev

RemoteUrl https://github.com/macieksk/rpca

RemoteRef HEAD

RemoteSha 197df1b727818ccd920db04d03e9d2a5446596ec

Contents
rpca-package . 2
F2norm . 3
rpca . 3

1

2 rpca-package

thresh.l1 . 6
thresh.nuclear . 7
trpca . 8

Index 12

rpca-package RobustPCA: Decompose a Matrix into Low-Rank and Sparse Compo-
nents, truncated version, with additional L2 noise separation option

Description

Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse
component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component anal-
ysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individ-
ually under some suitable assumptions. It is possible to recover both the low-rank and the sparse
components exactly by solving a very convenient convex program called Principal Component Pur-
suit; among all feasible decompositions, simply minimize a weighted combination of the nuclear
norm and of the L1 norm. This package implements this decomposition algorithm resulting with
Robust PCA approach.

Details

Index: This package was not yet installed at build time.

This package contains rpca function, which decomposes a rectangular matrix M into a low-rank
component, and a sparse component, by solving a convex program called Principal Component
Pursuit:

minimize ∥L∥∗ + λ∥S∥1
subject to L+ S = M

where ∥L∥∗ is the nuclear norm of L (sum of singular values).

Note

Use citation("rpca") to cite this R package.

Author(s)

Maciek Sykulski [aut, cre], Krzysztof Gogolewski [aut]

Maintainer: Maciek Sykulski <macieksk@gmail.com>

References

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal
of the ACM (JACM), 58(3), 11.

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12.

F2norm 3

See Also

rpca

F2norm Frobenius norm of a matrix

Description

Frobenius norm of a matrix.

Usage

F2norm(M)

Arguments

M A matrix.

Value

Frobenius norm of M.

Examples

The function is currently defined as
function (M)
sqrt(sum(M^2))

F2norm(matrix(runif(100),nrow=5))

rpca Decompose a matrix into a low-rank component and a sparse compo-
nent by solving Principal Components Pursuit

Description

This function decomposes a rectangular matrix M into a low-rank component, and a sparse compo-
nent, by solving a convex program called Principal Component Pursuit.

Usage

rpca(M,
lambda = 1/sqrt(max(dim(M))), mu = prod(dim(M))/(4 * sum(abs(M))),
term.delta = 10^(-7), max.iter = 5000, trace = FALSE,
thresh.nuclear.fun = thresh.nuclear, thresh.l1.fun = thresh.l1,
F2norm.fun = F2norm)

4 rpca

Arguments

M a rectangular matrix that is to be decomposed into a low-rank component and a
sparse component M = L+ S .

lambda parameter of the convex problem ∥L∥∗ + λ∥S∥1 which is minimized in the
Principal Components Pursuit algorithm. The default value is the one suggested
in Candès, E. J., section 1.4, and together with reasonable assumptions about L
and S guarantees that a correct decomposition is obtained.

mu parameter from the augumented Lagrange multiplier formulation of the PCP,
Candès, E. J., section 5. Default value is the one suggested in references.

term.delta The algorithm terminates when ∥M − L − S∥F ≤ δ∥M∥F where ∥ ∥F is
Frobenius norm of a matrix.

max.iter Maximal number of iterations of the augumented Lagrange multiplier algorithm.
A warning is issued if the algorithm does not converge by then.

trace Print out information with every iteration.
thresh.nuclear.fun, thresh.l1.fun, F2norm.fun

Arguments for internal use only.

Details

These functions decompose a rectangular matrix M into a low-rank component, and a sparse com-
ponent, by solving a convex program called Principal Component Pursuit:

minimize ∥L∥∗ + λ∥S∥1

subject to L+ S = M

where ∥L∥∗ is the nuclear norm of L (sum of singular values).

Value

The function returns two matrices S and L, which have the property that L + S ≃ M , where the
quality of the approximation depends on the argument term.delta, and the convergence of the
algorithm.

S The sparse component of the matrix decomposition.

L The low-rank component of the matrix decomposition.

L.svd The singular value decomposition of L, as returned by the function La.svd .
convergence$converged

TRUE if the algorithm converged with respect to term.delta.
convergence$iterations

Number of performed iterations.
convergence$final.delta

The final iteration delta which is compared with term.delta.
convergence$all.delta

All delta from all iterations.

rpca 5

Author(s)

Maciek Sykulski [aut, cre], Krzysztof Gogolewski [aut]

References

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal
of the ACM (JACM), 58(3), 11.

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12.

Examples

data(iris)
M <- as.matrix(iris[,1:4])
Mcent <- sweep(M,2,colMeans(M))

res <- rpca(Mcent)

Check convergence and number of iterations
with(res$convergence,list(converged,iterations))
Final delta F2 norm divided by F2norm(Mcent)
with(res$convergence,final.delta)

Check properites of the decomposition
with(res,c(
all(abs(L+S - Mcent) < 10^-5),
all(L == L.svd$u%*%(L.svd$d*L.svd$vt))
))
[1] TRUE TRUE

The low rank component has rank 2
length(res$L.svd$d)
However, the sparse component is not sparse
- thus this data set is not the best example here.
mean(res$S==0)

Plot the first (the only) two principal components
of the low-rank component L
rpc<-res$L.svd$u%*%diag(res$L.svd$d)
plot(jitter(rpc[,1:2],amount=.001),col=iris[,5])

Compare with classical principal components
pc <- prcomp(M,center=TRUE)
plot(pc$x[,1:2],col=iris[,5])
points(rpc[,1:2],col=iris[,5],pch="+")

"Sparse" elements distribution
plot(density(abs(res$S),from=0))
curve(dexp(x,rate=1/mean(abs(res$S))),add=TRUE,lty=2)

Plot measurements against measurements corrected by sparse components

6 thresh.l1

par(mfcol=c(2,2))
for(i in 1:4) {
plot(M[,i],M[,i]-res$S[,i],col=iris[,5],xlab=colnames(M)[i])
}

thresh.l1 Shrinkage operator

Description

Shrinkage operator: S[x] = sgn(x) max(|x| - thr, 0). For description see section 5 of Candès, E. J.,
Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?.

Usage

thresh.l1(x, thr)

Arguments

x a vector or a matrix.

thr threshold >= 0 to shrink with.

Value

S[x] = sgn(x) max(|x| - thr, 0)

References

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal
of the ACM (JACM), 58(3), 11

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12.

See Also

thresh.nuclear

Examples

The function is currently defined as
function(x,thr){sign(x)*pmax(abs(x)-thr,0)}

summary(thresh.l1(runif(100),0.3))

thresh.nuclear 7

thresh.nuclear Thresholding operator

Description

Thresholding operator, an application of the shrinkage operator on a singular value decomposition:
D[X] = U S[Sigma] V . For description see section 5 of Candès, E. J., Li, X., Ma, Y., & Wright, J.
(2011). Robust principal component analysis?.

Usage

thresh.nuclear(M, thr)

Arguments

M a rectangular matrix.

thr threshold >= 0 to shrink singular values with.

Value

Returned is a thresholded Singular Value Decomposition with thr subtracted from singular values,
and values smaller than 0 dropped together with their singular vectors.

u, d, vt as in return value of La.svd

L the resulting low-rank matrix: L = UDV t

References

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal
of the ACM (JACM), 58(3), 11

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12.

See Also

thresh.l1

Examples

The function is currently defined as
function (M, thr) {

s <- La.svd.cmp(M)
dd <- thresh.l1(s$d, thr)
id <- which(dd != 0)
s$d <- dd[id]
s$u <- s$u[, id, drop = FALSE]
s$vt <- s$vt[id, , drop = FALSE]
s$L <- s$u %*% (s$d * s$vt)

8 trpca

s
}

l<-thresh.nuclear(matrix(runif(600),nrow=20),2)
l$d

trpca TODO Decompose a matrix into a low-rank component and a sparse
component by solving Principal Components Pursuit

Description

TODO This function decomposes a rectangular matrix M into a low-rank component, and a sparse
component, by solving a convex program called Principal Component Pursuit.

Usage

trpca(M, #k,
k.start=1,
lambda = 1/sqrt(max(dim(M))), #This is ok only for dense matrices

lambda2 = 100*lambda, #TODO needs proper L1 sparse vs L2 noise weight setting
L2noise = TRUE, #Do decompose into M=L+S+E, or just M=L+S if FALSE

mu = prod(dim(M)) / (4*sum(abs(M))), #This is ok only for dense matrices
mu.max = mu*100, #Stops mu from getting to large too fast

#(i.e. from caring too much for constraint than objective.function)
mu.min = mu/200, #If smallest computed SV is larger than 1/mu.min we increase k.current

#and compute one more SV in next iteration
mu.growth.ratio=1.1,
term.delta=10^(-7),
max.iter=5000,
trace=FALSE,
message.iter=100,

n.iter.without.L2noise=5, #Number of start iterations without decomposing L2noise
#thresh.nuclear.fun=trpca.thresh.nuclear.sparse2,
#thresh.l1.fun=thresh.l1.sparse,
#zero.matrix.fun=zero.matrix.sparse,
thresh.nuclear.fun=trpca.thresh.nuclear,
thresh.l1.fun=thresh.l1,
zero.matrix.fun=zero.matrix,
F2norm.fun=F2norm)

Arguments

M a rectangular matrix that is to be decomposed into a low-rank component and a
sparse component M = L+ S .

trpca 9

lambda parameter of the convex problem ∥L∥∗ + λ∥S∥1 which is minimized in the
Principal Components Pursuit algorithm. The default value is the one suggested
in Candès, E. J., section 1.4, and together with reasonable assumptions about L
and S guarantees that a correct decomposition is obtained.

mu parameter from the augumented Lagrange multiplier formulation of the PCP,
Candès, E. J., section 5. Default value is the one suggested in references.

term.delta The algorithm terminates when ∥M − L − S∥F ≤ δ∥M∥F where ∥ ∥F is
Frobenius norm of a matrix.

max.iter Maximal number of iterations of the augumented Lagrange multiplier algorithm.
A warning is issued if the algorithm does not converge by then.

trace Print out information with every iteration.
thresh.nuclear.fun, thresh.l1.fun, F2norm.fun

Arguments for internal use only.

Details

TODO, documentation for original rpca below.

These functions decompose a rectangular matrix M into a low-rank component, and a sparse com-
ponent, by solving a convex program called Principal Component Pursuit:

minimize ∥L∥∗ + λ∥S∥1

subject to L+ S = M

where ∥L∥∗ is the nuclear norm of L (sum of singular values).

Value

The function returns two matrices S and L, which have the property that L + S ≃ M , where the
quality of the approximation depends on the argument term.delta, and the convergence of the
algorithm.

S The sparse component of the matrix decomposition.

L The low-rank component of the matrix decomposition.

L.svd The singular value decomposition of L, as returned by the function La.svd .
convergence$converged

TRUE if the algorithm converged with respect to term.delta.
convergence$iterations

Number of performed iterations.
convergence$final.delta

The final iteration delta which is compared with term.delta.
convergence$all.delta

All delta from all iterations.

Author(s)

Maciek Sykulski [aut, cre], Krzysztof Gogolewski [aut]

10 trpca

References

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal
of the ACM (JACM), 58(3), 11.

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12.

Examples

TODO original rpca examples below

data(iris)
M <- as.matrix(iris[,1:4])
Mcent <- sweep(M,2,colMeans(M))

res <- rpca(Mcent)

Check convergence and number of iterations
with(res$convergence,list(converged,iterations))
Final delta F2 norm divided by F2norm(Mcent)
with(res$convergence,final.delta)

Check properites of the decomposition
with(res,c(
all(abs(L+S - Mcent) < 10^-5),
all(L == L.svd$u%*%(L.svd$d*L.svd$vt))
))
[1] TRUE TRUE

The low rank component has rank 2
length(res$L.svd$d)
However, the sparse component is not sparse
- thus this data set is not the best example here.
mean(res$S==0)

Plot the first (the only) two principal components
of the low-rank component L
rpc<-res$L.svd$u%*%diag(res$L.svd$d)
plot(jitter(rpc[,1:2],amount=.001),col=iris[,5])

Compare with classical principal components
pc <- prcomp(M,center=TRUE)
plot(pc$x[,1:2],col=iris[,5])
points(rpc[,1:2],col=iris[,5],pch="+")

"Sparse" elements distribution
plot(density(abs(res$S),from=0))
curve(dexp(x,rate=1/mean(abs(res$S))),add=TRUE,lty=2)

Plot measurements against measurements corrected by sparse components
par(mfcol=c(2,2))
for(i in 1:4) {

trpca 11

plot(M[,i],M[,i]-res$S[,i],col=iris[,5],xlab=colnames(M)[i])
}

Index

∗ Frobenius norm
F2norm, 3

∗ low-rank and sparse components
rpca, 3
trpca, 8

∗ package
rpca-package, 2

∗ robust pca
rpca, 3
rpca-package, 2
trpca, 8

∗ rpca
rpca, 3
rpca-package, 2
trpca, 8

∗ shrinkage operator
thresh.l1, 6

∗ sparse and low-rank matrix decomposition
rpca-package, 2

∗ thresholding operator
thresh.nuclear, 7

∗ trpca
trpca, 8

F2norm, 3

rpca, 2, 3, 3
rpca-package, 2

thresh.l1, 6, 7
thresh.nuclear, 6, 7
trpca, 8

12

	rpca-package
	F2norm
	rpca
	thresh.l1
	thresh.nuclear
	trpca
	Index

